Training and Optimization of Neural
Networks and Generative
Adversarial Networks over

Distributed Resource

J-R. Vlimant, with many others V. Loncar, F. Pantaleo, T.
Nguyen, M. Pierini, A. Zlokapa, S. Valecorsa, ...



Outline

« ANN and GAN
« Training workload parallelization
* Hyper-parameters optimization
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Artificial Neural Network
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Large number of parameters

Efficiently adjusted with stochastic gradient descent
The more parameters, the more data required
Training to convergence can take minutes to several days,
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Generative Adversarial Network
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A Forger's Game

D: Detective

E :

R: Real Data G: Generator (Forger) I: Input for Generator

e Constructed from two artificial neural networks
* Two concurrent gradient descent procedure

* Training to convergence can take minutes to several days, ...
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GAN for CLIC

"x\ Generative adversarial network
- architecture for CLIC 3D dataset
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Training Artificial Neural Networks
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 ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters
» Gradient evaluated over batch of data
> Too small : very noisy and scattering
> Too large : information dilution and slow convergence
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Distributed Training
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Parallelism Overview

>Data distribution

Compute the gradients on several batches
independently and update the model synchronously or
not. Applicable to large dataset

>Gradient distribution
Compute the gradient of one batch in parallel and
update the model with the aggregated gradient.
Applicable to large sample = large event

>Model distribution

Compute the gradient and updates of part of the
model separately in chain. Applicable to large model
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Data
Distribution
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Data Distribution

1) Compute gradient,
send to Master 2) Update network

E w— W — T,'VQ(w) weights

3) Send new weights to Worker ¢

https://arxiv.org/abs/1712.05878

 Master node operates as parameter server
* Work nodes compute gradients
 Master handles gradients to update the central model
> downpour sgd https://tinyurl.com/ycfpwec5
> Elastic averaging sgd https://arxiv.org/abs/1412.6651
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Performance on ANN
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e Speed up in training recurrent neural networks on Piz Daint
CSCS supercomputer
> Linear speed up with up to ~20 nodes. Bottlenecks to be
identified
> Needs to compensate for staleness of gradients
e Similar scaling on servers with 8 GPUs
> X7 speed up with students' work
« Gradient energy matching (https://arxiv.org/abs/1805.08469)
implemented to mitigate staleness of gradients
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Speedup

Performance on GAN
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» Speed up in training generative
adversarial networks on Piz Daint CSC
and Titan ORNL supercomputers

> Using easgd algorithm with rmsprop
> Speed up is not fully efficient.
Bottlenecks to be identified E L
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Sub-master Layout
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» Putting workers in several groups

« Aim at spreading communication to the main master

* Need to strike a balance between staleness and
update frequency
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Gradient
Distribution
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“all-reduce” Layout
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* A logical worker is spawn over multiple mpi processes

« Communicator passed to horovod https://github.com/uber/horovod
 Private horovod branch to allow for group initialization/reset

* Nvidia NCCL enabled for fast GPU-GPU communication
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Model
Distribution
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Intra-Node Model Parallelism
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» Perform the forward and backward pass of sets of layers on
different devices

* Require good device to device communication

 Utilize native tensorflow multi-device manager

* Aiming for machines with multi-gpu per node topology (summit)
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Hyper-Parameters
Optimization
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Hyper-Parameters

« Various parameters of the model cannot be learned by
gradient descent
- Learning rate, batch size, number of layers, size of
kernels, ...

e Tuning to the right architecture is an “art”. Can easily
spend a lot of time scanning many directions

 Full parameter scan is resource/time consuming.

> Hence looking for a way to reach the optimum hyper-
parameter set for a provided figure of merit (the loss by
default, but any other fom can work)
> Too optimization engine integrated
- Bayesian optimization with gaussian processes prior
> Evolutionary algorithm
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Basic Layout

“ J

Parameter-set group 0

* One master process drives the hyper-parameter optimization
N groups of nodes training on a parameter-set on simultaneously

* One training master
« N, training workers
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Bayesian Optimization

observation (x)
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https://tinyurl.com/yc2phuaj

* Objective function is
approximated as a multivariate
gaussian

 Measurements provided one by
one to improve knowledge of the
objective function

* Next best parameter to test is
determined from the acquisition
function

* Using the python implementation
from
https://scikit-optimize.github.io

Deep Learning Training & Optimization,
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Evolutionary Algorithm

 Chromosomes are represented by the hyper-parameters
e |nitial population taken at random in the parameter space
* Population is stepped through generations
» Select the 20% fittest solutions
» Parents of offspring selected by binary tournament based on
fitness function
» Crossover and mutate to breed offspring
« Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function

* Chromosome crossover: ® ; ; A. Genetic Diversity
* Let Parent A be more fit than Parent B ® J. m:ﬁ_j Population

* For each parameterp, generate a random number 7 in (0, 1) to find p.p;14

_ D. Reproduce B. Evaluate
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* Non-uniform mutation (Michalewicz): e ® o ®
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generate random numbers 11,7, € (0, 1) to define a mutation m:
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K-Folding Cross Validation

[] \Validation Set
- Training Set

Round 1 Round 2 Round 3 Round 10
WE— 90% 91% 95%

Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

» Estimate the performance of multiple model training over
different validation part of the training dataset

 Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...)

» Crucial when comparing models performance

* Training on folds can proceed in parallel
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K-folding Layout

Parameter-set group 0

* One master running the optimization. Receiving the average figure of
merit over N_ folds of the data

- N, groups of nodes training on a parameter-set on simultaneously
> N_ groups of nodes running one fold each

Deep Learning Training & Optimization,
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Summary and Outlook
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Putting all Features Together

N =1+ N, X N_x (N, x N, xN

nodes GPU)

N, : # of concurrent hyper-parameter set tested
N_ : # of folds

N, : # of masters

N, : # of workers per master

N, : # of nodes per worker (1node=1gpu)

Speed up and optimize models using thousand(s)
of GPUs

Deep Learning Training & Optimization,
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Past, Present & Future

» Existing:

Support keras+tf and pytorch
GAN example

Data, gradient, model distribution
K-folding

Hyper-opt with BO, and EA

A\ A\ v A\ v

» Recently done:
v Speed up performance on the master
v Refactor code to one package https://github.com/vlimant/NNLO
v Better interface for model, data, hyper-parameters
v Proper logging
v Checkpointing for training and optimization

« Still to be done:

Issue with distributed BatchNorm

Seamless support of GAN models (still a little adhoc)
Characterize speed up with updated master code
Characterize optimization speed-up / advantage
More documentation

R R R R R
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Cray ML plugin

MPI based. Synchronous SGD. TF1.4
Optimal scaling through a large number of

nodes

Observed performance degradation at low

energy

Possibly compensate by increasing learning

rate
Work in progress

GPU System CPU System
Model XC40/XC50 XC50

Computer nodes Intel Xeon E5- Two Intel Xeon
2697 v4 @ 2.3GHz  Platinum 8160 @

(18 cores, 64GB 2.1GHz
RAM) and NVIDIA (2 x 24 cores,
Tesla P100 16GB 192GB RAM)

Interconnect Aries, Dragonfly Aries, Dragonfly

network topology  netwoark topology
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R ANY

\'...

—— Dala
—— GAN_1GPU

GAN_ 2GPU
GAN_ AGPU

— GAN_ BGPU
GAN_16GPU

|

Ll [ . 1111 1111
350 400 450 500
Ep GeV

5120 T

1T SR e el il s ol i el - Sl b R R AR
150; ....................................

.

20| i ciiiife +—= avg time/epoch (min) ||
i = total imag/s

10
2

4 8 16
# nodes

120l Performance Scalingon CPU__
1| SR f , saiasicn

T3 | A i AR SO

* avg time/step (s)

10, +—+ total img/s
H | n

' 1 1
4 8 16 32 64
# nodes

Sofia V. @ https://sites.google.com/nvidia.com/ai-hpc
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Use keras 2.13 /Tensorflow 1.9
(Intel optimised)

istributed
training

s

AVX512 —-FMA-XLA support

Intel® MKL-DNN (with 3D
convolution support)

Optimised multicore utilisation

inter op paralellism_threads/intra_
op_paralellism threads

Horovod 0.13.4

= cern
IS oper
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Synchronous SGD approach
MPI_AlIReduce

Some performance degradation
Mostly in the low energy regions for large batchsize

Ratio of Ecal and Ep

0.03

Ecal/lEp

0_025:_*. -

F i +¥$i’ $++ '

-\*%HJ, gLng %t Jf* . &

0.02 Lt *w
Sik il ﬁttit X

R

0.015-

a Data
0.1 - BatchSize=1000

F BatchSize=4000
00057 " BatchSize=10000

c_iwwwwww

i IS N BRI NS S N W
0 50 100 150 200 250 300 350 400 450 ESOO
p

TN

Run on TACC Stampede?2 cluster:
* Dual socket Intel Xeon 8160
» 2x 24 cores per node, 192 GB RAM
* Intel® Omni-Path Architecture

Test several MPI scheduling
configurations
2,4, 8 processes per nodes.

» Best machine efficiency with 4
processes/node

Speedup

High Energy Physics: 3D GANS Training Scaling Performance

Intel 28 Xeon(R) on Stampede2/TACC, OPA Fabric -

TensorFlow 1.9+MKL-DNN+horovod, IMPI, Core Aff. BKMs, 4 Workers/Node !

--25 X%on 8160: Secs/Epoch Speedup —-|deal “@-Scaling Efficiency
9
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128-Node perf; 121 90%
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‘Sofia V. @ https://sites.google.com/nvidia.com/ai-hpc
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Sub-Master Layout

/

Parameter-set group 0

* One master running the bayesian optimization
« N, groups of nodes training on a parameter-set on simultaneously

* One training master
 N,, training sub-masters

e« N training Westkleaagning Training & Optimization,
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all-reduce Layout

Parameter-set group 0

* One master running the bayesian optimization
« N, groups of nodes training on a parameter-set on simultaneously

* One training master
« N, training worker groups

« N, used for each worker group (either nodes or gpu)
Deep Learning Training & Optimization,
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mpi-skopt Setup

Parameter-set group 0

* One master running communication of parameter set
« N, workers running the bayesian optimization

« N, groups of nodes training on a parameter-set on simultaneously

* One training master

e« N traininag workBe¢ep Learning Training & Optimization,
06/04/19 w J J-R Vlimant, exa.trkx kick-off 36
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